首頁 »
2010/11/30

利用電化學加工製作微電極和微孔之研究與分析

在眾多傳統加工中,電化學微細加工(EMM)又稱微電解加工,屬於特種加工的一種。其優點是可以加工任何金屬材料,並不受其硬度與強度的影響;且刀具電極不損耗,工件表面不含殘留應力,加工重複性較放電加工高,但其缺點在於微加工精度不高故本文針對以電化學加工法製作微電極和孔加工精度進行探討。
  微電極在非傳統加工中應用層面廣,但微電極的製作多半是由線放電研磨和雷射加工所製作,其成本花費很高且製作效率低,加上二者皆是採熱加工容易殘留應力,故本研究利用電拋光方式分別探討在直流和脈衝電源供應器下,其加工參數對於微電極製作之外型和尺寸的影響並搭配旋轉系統增加質傳效應。經由實驗發現到低電壓、高電解液濃度、加上合適的轉速,可製作出小於100 μm之微電極,且發現到加工之微電極轉速對於電極外型有很大的影響性。在搭配脈衝電源供應下製作微電極其以線性遞減操作電壓和加工能率的方式,可成功的製作出刃長為2 mm、3 mm、4 mm,電極直徑為100 μm的圓柱狀微電極,也利用此微電極進行深孔加工。
  在微電化學深孔加工中因為電極細小,不易使用中空管刀具進行排屑,故本研究採用旋轉刀具,改善電解液流動問題,且配合脈衝式直流電源,提供有規律的間歇供電進行間歇加工,以改善成品精度和增加孔深寬比。經由實驗可發現,在刀具轉速越高其加工深度可越深但高於某一轉速後其影響性降低,在使用50 μm的陰極刀具,且配合1000 RPM下其加工深度可達1000 μm(深寬比約1 : 9),過切量為33.35 μm。而在極短脈衝電化學加工經由實驗發現脈衝頻率和過切關係不為線性以及氫氣泡對於加工的影響很高,在單一脈衝放電時間為30 ns下其可製作出深度為300 μm,孔過切量為13.75 μm的微孔。

姓名 范智文(Zhi-wen Fan)
查詢紙本館藏  紙本論文權限立即開放
電子郵件信箱 E-mail 資料不公開
畢業系所 機械工程研究所(Mechanical Engineering)
畢業學位 博士(Ph.D.) 畢業時期 98學年第2學期
論文名稱(中) 利用電化學加工製作微電極和微孔之研究與分析
論文名稱(英) The Analysis and Investigation on the Micro-electrode and Micro-hole Fabrication by Electrochemical Machining
檔案
943403013.pdf
  1. 本電子論文使用權限為二年後開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 二年後開放
論文語文/頁數 中文/190
統計 本論文已被瀏覽 204 次,被下載 0 次
摘要(中) 摘要
  在眾多傳統加工中,電化學微細加工(EMM)又稱微電解加工,屬於特種加工的一種。其優點是可以加工任何金屬材料,並不受其硬度與強度的影響;且刀具電極不損耗,工件表面不含殘留應力,加工重複性較放電加工高,但其缺點在於微加工精度不高故本文針對以電化學加工法製作微電極和孔加工精度進行探討。
  微電極在非傳統加工中應用層面廣,但微電極的製作多半是由線放電研磨和雷射加工所製作,其成本花費很高且製作效率低,加上二者皆是採熱加工容易殘留應力,故本研究利用電拋光方式分別探討在直流和脈衝電源供應器下,其加工參數對於微電極製作之外型和尺寸的影響並搭配旋轉系統增加質傳效應。經由實驗發現到低電壓、高電解液濃度、加上合適的轉速,可製作出小於100 μm之微電極,且發現到加工之微電極轉速對於電極外型有很大的影響性。在搭配脈衝電源供應下製作微電極其以線性遞減操作電壓和加工能率的方式,可成功的製作出刃長為2 mm、3 mm、4 mm,電極直徑為100 μm的圓柱狀微電極,也利用此微電極進行深孔加工。
  在微電化學深孔加工中因為電極細小,不易使用中空管刀具進行排屑,故本研究採用旋轉刀具,改善電解液流動問題,且配合脈衝式直流電源,提供有規律的間歇供電進行間歇加工,以改善成品精度和增加孔深寬比。經由實驗可發現,在刀具轉速越高其加工深度可越深但高於某一轉速後其影響性降低,在使用50 μm的陰極刀具,且配合1000 RPM下其加工深度可達1000 μm(深寬比約1 : 9),過切量為33.35 μm。而在極短脈衝電化學加工經由實驗發現脈衝頻率和過切關係不為線性以及氫氣泡對於加工的影響很高,在單一脈衝放電時間為30 ns下其可製作出深度為300 μm,孔過切量為13.75 μm的微孔。
摘要(英) In numerous micromachining, electrochemical micro-machining (EMM) also called the electrolytic micro-machining that belong to the non conventional machining. It has more advantages such as any metal material regardless of its hardness can be machined, the cathode tool would not break in the machining process, the work piece after machining will not have any residual stress remained on its surface, the machining reproducibility was high than electro discharge machining. Due to the EMM that disadvantage was the low machining precision. In this paper we discussion the working parameters of EMM that how to effect the machining precision on the manufacture the micro-electrode and hole drilling.  
 The mircro-electrode has high potential application in non-conventional machining, because the micro-electrode is very thin, generally they are fabricated by micro-electro discharge and laser machining. However, the corresponding equipments are very expensive and their machining efficient is very low. In this reseaech, we applied in the form of electrochemical polish to manufacture the micro-electrode. Under using the DC and pulsed voltage power supply we disscuss the working parameters that how to efeect the micro-electrode’s size and form. For increasing the mass diffusion effect, it added the rotational system in the experimet. Experimental results show that low applied voltage, high concentration electrolyte and an appropriate rotation of electrode are preferred to fabricate micro electrodes with diameter less than 100 μm. From the experiment, it found the rotational speed had critical affect in the form of micro-electrode. When processing the microelectrode by the pulsed voltage power supply, it could fabricate the 100 μm cylindrical tungsten microelectrode and length of 2 mm, 3 mm and 4 mm by linear decay of applied voltage or duty at different length, and we used the micro-electrode to process the electrochemical micro drilling.
 In the electrochemical machining of deep holes, especially for small holes, driving out the sludge is always difficult. The hollow tool electrode or lateral flow of the electrolyte cannot be applied to improve the machining precision anymore. In this paper, a rotational tool electrode and a high-frequency pulsed generator were applied herein to drive out the sludge, increase the machining precision and achieve the high aspect ratio hole. By the experiment, a high quality micro hole with a 33.35 μm overcut is drilled by a WC pin of diameter 50 μm on a 304 stainless steel plate of thickness 1000 μm(The hole aspect ratio reaches around 1 : 9.).It shows that a rotational tool can be utilized in the deep hole, electrochemical micro-drilling. In the electrochemical micro drilling with ultral short pulse voltage, by the experiment, it found the relationship between pulsed frequency and overcut was not linear and an excess amount of hydrogen gas bubbles would hinder hole machining, and reduce machining efficiency and precision. Under 30 ns pulsed on-time, a high-quality micro hole with a 13.75 μm overcut is drilled on a nickel plate of 300 μm thick.
關鍵字(中)
  • 電雙層
  • 微孔
  • 脈衝電壓
  • 微電化學加工
  • 微電極
  • 關鍵字(英)
  • Electrochemical micromachining
  • Micro electrode
  • 論文目次 摘要i
    Abstractiii
    目錄v
    表目錄ix
    圖目錄x
    符號說明xiv
    第一章 序論1
    1-1 前言1
    1-2電化學加工製做微電極4
    1-3 微電化學孔加工8
    1-4 文獻回顧9
    1-4-1 電極製作10
    1-4-2電化學加工15
    1-5 研究目的28
    第二章 理論31
    2-1 電化學加工基本理論31
    2-2 極化(polarization)32
    2-3 液相質傳動力學35
    2-4 電解液導電度37
    2-5 電極直徑和加工時間的關係37
    2-6 電雙層理論38
    2-7 電流效率與電流密度41
    2-8 電極間距和加工時間的關係42
    第三章 實驗設備與步驟45
    3-1 實驗裝置45
    3-1-1 機台結構設計45
    3-1-2 刀具進給控制系統46
    3-1-3 電源供應系統47
    3-1-4 伺服馬達48
    3-1-5 導電度量測儀器48
    3-1-6 恆電位儀49
    3-1-7 恆溫加熱器49
    3-2 實驗材料50
    3-2-1以電化學加工法微電極製作50
    3-2-2脈衝電化學孔加工51
    3-3 實驗步驟54
    第四章 利用電化學加工製作微電極分析58
    4-1 電化學加工製作微電極58
    4-1-1轉速對微電極製作影響59
    4-1-2 加工電壓對微電極製作影響62
    4-1-3 電解液濃度對微電極製作影響63
    4-1-4 陰陽極浸入長度對微電極製作影響64
    4-1-5 電流大小對微電極製作影響65
    4-1-6 電極電極間距對微電極製作影響66
    4-1-7 圓柱電極製作之技術66
    4-2 脈衝電化學加工製作微電極67
    4-2-1脈衝電壓對微電極製作影響69
    4-2-2 脈衝週期對微電極製作影響70
    4-2-3 加工能率(Duty)對微電極製作影響70
    4-2-3-1 高加工能率71
    4-2-3-2 低加工能率72
    4-2-4 電解液溫度對微電極製作影響73
    4-2-5 線性電壓遞減對微電極製作影響74
    4-2-6 線性加工能率遞減對微電極製作影響77
    4-2-7 不同長度之類圓柱電極製作之技術78
    第五章 脈衝電化學孔加工81
    5-1 使用旋轉刀具之脈衝電化學深孔加工81
    5-1-1 脈衝電壓對孔加工精度的影響83
    5-1-2 電解液濃度對孔加工精度的影響84
    5-1-3 脈衝頻率對孔加工精度的影響84
    5-1-4 刀具尺寸對孔加工精度的影響85
    5-1-5 刀具進給速率對孔加工精度的影響86
    5-1-6 陰極刀具轉速對孔加工精度的影響86
    5-1-7 加工深度對孔加工精度的影響88
    5-1-8微孔元件製作88
    5-2 極短脈衝電化學孔加工89
    5-2-1 脈衝電壓對孔加工精度的影響90
    5-2-2 電解液濃度對孔加工精度的影響91
    5-2-3 脈衝頻率對孔加工精度的影響92
    5-2-4 脈衝放電時間對孔加工精度的影響93
    5-2-5 刀具進給速率對孔加工精度的影響94
    5-2-6 加工深度對孔加工精度的影響95
    5-2-7微孔和三維元件製作96
    第六章 結論98
    參考文獻100
    表目錄
    表1 Ni200之化學組成表116
    表2 304SS之化學組成表116
    表3. NaOH電解液導電度116
    表4. NaNO3電解液導電度116
    表5. 不同線性遞減電壓下製作微電極之加工參數117
    表6. 不同線性遞減加工能率下製作微電極之加工參數117
    表7(a). 0.3 M HCL+NaCL導電度118
    表7(b). 0.1 M HCL+NaCL導電度118
    圖目錄
    圖1-1. 電化學拋光之黏稠層119
    圖1-2. 電化學拋光之電壓-電流( V - I )曲線圖[7]120
    圖1-3. 微探針加工示意圖[13]120
    圖1-4. 動力法加工示意圖[14]121
    圖1-5. 加工時質量擴散層示意圖[16]122
    圖2-1.電雙層示意圖[20]123
    圖2-2. 加工之電雙層等效電路圖124
    圖3-1. 3-D懸臂式機械手臂示意圖125
    圖3-2. 實體加工機台125
    圖3-3. 數位示波器與脈衝產生器126
    圖3-4. ECM對純鐵加工之極化曲線和電極介面模型[48]127
    圖4-1. 微電極量測尺寸位置圖128
    圖4-2. 純鎢棒在不同NaOH電解液濃度下之電壓電流曲線圖128
    圖4-3. 微電極加工過程圖: (a)電極底部黏稠層狀況(2V,1000RPM) (b)氧氣泡貼附電極表面(1.6V, 0RPM)129
    圖4-4. Fluent模擬不同轉速的流場與壓力分佈之變化130
    圖4-5. 在不同轉速下所製作之微電極形狀131
    圖4-6. 不同轉速下電極外型變化132
    圖4-7. 不同轉速下加工600秒時,電極平均直徑差異132
    圖4-8. 不同加工電壓下電極外型變化133
    圖4-9. 在加工電壓1.2V下電極外型隨時間變化133
    圖4-10. 在不同加工電壓下電極表面 (a) 未加工,(b) 1.4V, 1000RPM, (c) 2.0V, 1000RPM134
    圖4-11. 不同電解液濃度下電極外型變化135
    圖4-12. 不同陰極面積下電極外型變化135
    圖4-13. 不同陽極浸入長度下電極外型變化136
    圖4-14. 不同時間下之電極尺寸和表面變化(電極長度3mm)136
    圖4-15. 不同電流下電極外型變化137
    圖4-16. 不同電極間距下電極外型變化137
    圖4-17. 在加工電壓1.4 V下: (a)電極外型(b)電極尺寸隨時間變化138
    圖4-18. 類圓柱電極製作139
    圖4-19. 實驗加工示意圖140
    圖4-20. 在不同脈衝電壓下直流電源和脈衝電源加工之金屬移除量 差異141
    圖4-21. 不同脈衝電壓下直流電源和脈衝電源加工下之電極外型141
    圖4-22. 不同脈衝電壓下電極外型變化142
    圖4-23. 不同脈衝週期下電極外型變化143
    圖4-24. 不同加工能率下電極外型變化 (50 %~80 %)144
    圖4-25. 不同加工能率下電極外型變化 (50 %~20 %)145
    圖4-26. 不同電解液溫度下電極外型變化146
    圖4-27. 不同線性遞減電壓下電極外型和尺寸變化147
    圖4-28. 不同線性遞減加工能率下電極外型和尺寸變化148
    圖4-29. 由線性遞減電壓所製作出不同長度之微電極149
    圖4-30. 使用所製作之微電極進行脈衝電化學孔加工 (100X)150
    圖5-1. 脈衝電化學孔加工示意圖151
    圖5-2. 不鏽鋼不同NaNO3電解液濃度下之電壓電流曲線圖152
    圖5-3. 不同脈衝放電時間下改變脈衝電壓之孔過切量變化152
    圖5-4. 不同脈衝電壓和脈衝放電時間所加工出的孔外型變化 (100X)153
    圖5-5. 不同脈衝放電時間下改變脈衝電壓之孔錐度變化153
    圖5-6. 不同脈衝放電時間下改變電解液濃度之孔過切量變化154
    圖5-7. 不同脈衝放電時間下改變電解液濃度之孔錐度變化154
    圖5-8. 不同脈衝頻率下改變脈衝電壓之孔過切量變化155
    圖5-9. 不同脈衝頻率下改變脈衝電壓之孔錐度變化155
    圖5-10. 不同脈衝放電時間下改變陰極刀具尺寸之孔過切量變化156
    圖5-11. 不同脈衝放電時間下改變陰極刀具尺寸之孔錐度變化156
    圖5-12. 不同脈衝放電時間下改變刀具進給速率之孔過切量變化157
    圖5-13. 不同脈衝放電時間下改變陰極刀具轉速之孔過切量變化158
    圖5-14. 不同加工深度下改變脈衝放電時間之孔過切量變化159
    圖5-15. 以脈衝電化學加工不同厚度工件之孔外型 (200X)160
    圖5-16. 不同脈衝頻率之輸出波形圖161
    圖5-17. 不同脈衝電壓下孔過切量變化162
    圖5-18. 在5V脈衝電壓下所加工之孔外型和氣泡阻礙情形162
    圖5-19. 不同脈衝電壓下孔錐度變化163
    圖5-20. 不同電解液濃度下孔過切量變化163
    圖5-21. 不同電解液濃度下孔錐度變化164
    圖5-22. 不同脈衝頻率下孔過切量變化164
    圖5-23. 不同脈衝頻率下孔錐度變化165
    圖5-24. 不同脈衝放電時間下孔過切量變化165
    圖5-25. 不同脈衝放電時間下孔錐度變化166
    圖5-26. 不同脈衝放電時間下所加工出的孔外型166
    圖5-27. 不同刀具進給速率下孔過切量變化167
    圖5-28. 不同刀具進給速率下孔錐度變化167
    圖5-29. 不同加工深度下孔過切量變化168
    圖5-30. 以極短脈衝電化學加工不同厚度工件之孔外型168
    圖5-31. 以極短脈衝電化學加工3D元件169
    參考文獻 1.D.J. Nagel and M.E. Zaghloul, MEMS: Micro techanology : Mega  impact, IEEE Circuit Devices Magazine. Vol. 28, pp. 14-25 (2001).
    2.K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu1, R. Resnick and A. DeSilva, Micro and nano machining by electro-physical and chemical processes, CIRP Annals Manufacturing Technology, Vol. 55 (1), 643-666 (2006).
    3.J. A. McGeough, M. Leu, K. P. Rajurkar, A. DeSilva, Q. Liu, Electroforming Process and Application to Micro/Macro Manufacturing, CIRP Annals Manufacturing Technology, Vol. 50 (1), 499-502 (2001).
    4.X. Liu, R.E. Devor, S.G. Kapoor and K.F. Ehmann, The mechanics of machining at the microscale: assessment of the current state of the science, Journal of Manufacturing Science and Engineering, Vol. 126(4), 666-678 (2004).
    5.楊顯謀,“不銹鋼電解拋光技術簡介”,鋼鐵研究,72 期,84-96
      頁,12 月,1989。
    6.H. Hocheng, and P.S. Pa, Electropolishing and electrobrightening of holes using different feeding electrodes, Journal of Materials Processing technology, Vol. 89-90, pp. 440-446 (1999).
    7.陳裕豐,“高潔淨閥件之流道表面處理-電解拋光(EP)技術”,機械工業雜誌,198 期, 230-240頁,9 月,1999。
    8.M. S. Nikolova, A. Natarajan and P. C. Searson, Electrochemical fabrication of sharp nickel tips in H2SO4 solutions, Journal of the Electrochemical Society, Vol. 144(2), pp. 455-460 (1997).
    9.J.A. McGeough, Principles of electrochemical machining, Chapman Hall, London, p. 9, 1974.
    10.G. Binnibg, H. Rohrer, and C. Cerber, Atomic force microscopy, Phys Rev. Lett, Vol. 56, pp. 930 (1986).
    11.G.J Edwards and P.R.Pearce, Comparison of AC and DC electrochemical etching techniques for the fabrication of tungsten whiskers, Journal of Physics D Applied Physics, Vol. 11, pp. 761-764 (1978).
    12.S.F.Ceballos, G.Mariotts, S.Murphy, and I.V.Shvets, Fabrication of magnetic STM probes and their application to studies of the Fe3O4 (0 0 1) surface, Surface Science, Vol. 523, pp. 131-140 (2003).
    13.S. Kerfriden, A. H. Nahle, S. A. Campbel, F. C. Walsh, and J. R.Smith, Short communication the electrochemical etching of tungsten STM tips, Electrochimica Acta, Vol. 43, pp. 1939-1944 (1998).
    14.R. Hobara, S. Yoshimoto, and S. Hasegawa, Dynamic  electrochemical etching technique for tungsten tips suitable for  multi-tip scanning tunneling microscopes, Journal of Surface  Science and Nanotechnology, Vol. 5, pp. 94-98 (2007).
    15.D. Xu, K. M. Liechti, and K. R. Chandar, Mesoscale scanning probe tips with subnanometer rms roughness, Review of Scientific Instruments, Vol. 78(7), pp. 0737071-0737079 (2007).
    16.Y. M. Lim and S. H. Kim, An electrochemical fabrication method for extremely thin cylindrical micropin, International Journal of Machine Tools & Manufacture, Vol. 41, pp. 2287-2296 (2001).
    17.Y. M. Lim, H. J. Lim, J. R. Liu and S. H. Kim, Fabrication of cylindrical micropins with various diameters using DC current density control, Journal of Materials Processing Technology, Vol. 141, pp. 251-255 (2003).
    18.Z. Wang, B. Zhu and G. Cao, Fabricating microelectrode by electrochemical micromachining, Harbin, china Dept. of Mechanic Engineering, Harbin Institute of Technology, Vol. 6041, pp. 60411p1-60411p5 (2006) (EI).
    19.S. H. Choi, S.H. Ryu and C.N. Chu, Fabrication of WC micro-shaft  by using electrochemical etching, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 682-687 (2007).
    20.E. S. Lee, S. Y. Baek, and C. R. Cho, A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
    21.D. Zhu1, K. Wang and N. S. Qu, Micro wire electrochemical cutting by using in situ fabricated wire electrode, CIRP Annals  Manufacturing Technology, Vol. 56, pp.241-244 (2007).
    22.M. Wang, D. Zhu and L. Wang, Preparation of electrode array by electrochemical etching based on FEM, Journal of Material Science and Technology, Vol. 24(6), pp.845-849 (2008).
    23.D. Zhu and H. Y. Xu, Improvement of electrochemical machining accuracy by using dual pole tool, Journal of Materials Processing Technology, Vol. 129 pp. 15-18 (2002).
    24.H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, A material removal  analysis of electrochemical machining using flat-end cathode,  Journal of Material Processing Technology, Vol. 140, pp. 264-268 (2003).
    25.V.P. Zhitnikov, G.I. Fedorova, O.V. Zinatullina and A.V. Kamashev, Simulation of non-stationary processes of electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 398-403 (2004).
    26.A.N. Zaytsev, V.P. Zhitnikov and T.V. Kosarev, Formation mechanism and elimination of the workpiece surface macro-defects, aligned along the electrolyte 
    stream at electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 439-444 (2004).
    27.J. Kozak, K. P. Rajurkar and Y. Makkar, Selected problems of micro-electrochemical machining, Journal of Materials Processing Technology, Vol. 149 pp. 426-431 (2004).
    28.S. K. Mukherjee, S. Kumar and P. K. Srivastava, Intervening variables in electrochemical machining, Tamkang Journal of Science and Engineering, Vol. 8, pp. 23-28 (2005).
    29.J. C. d. S. Neto, E. M. d. Silva and M. B. d. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Technology, Vol. 179, pp. 92-96 (2006).
    30.X. Jiawen, Y. Naizhang, T. Yangxin and K.P. Rajurkar, The modelling of NC-electrochemical contour evolution machining using a rotary tool-cathode, Journal of Materials Processing Technology, Vol. 159, pp. 272-277 (2005).31.T. Kurita and M. Hattori, A study of EDM and ECM/ECM-lapping complex 
    machining technology, International Journal of Machine Tool and Manufacture, Vol. 46, pp. 1804-1810 (2006).
    32.T. Kurita, C. Endo, Y. Matsui, H. Masuda, K. Terasawa, F. Tanaka, H. Ikeda, K.  Oguchi and K. Kobayashi, Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process, International Journal of Machine Tool and Manufacture, Vol. 48, pp. 1599-1604 (2008).
    33.J. C. Fang, Z. J. Jin, W. J. Xu, Y. Y. Shi, Magnetic electrochemical finishing 
    machining, Journal of Materials Processing Technology, Vol. 129, pp. 283-287 (2002).
    34.Z. Fan, T. Wan, L. Zhong, The mechanism of improving machining accuracy of ECM by magnetic field, Journal of Materials Processing Technology, Vol. 149, pp. 409-413 (2004).
    35.B. Huaiqian, X. Jiawen, L. Ying, Aviation-oriented micromachining technology-micro-ECM in Pure Water, Chinese Journal of Aeronautics, Vol. 21, 
    pp. 455-461 (2008).
    36.S. J. Lee, C. Y. Lee, K. T. Yang, F. H. Kuan and P. H. Lai, Simulation and fabrication of micro-scaled flow channels for metallic bipolar plates by the electrochemical micro-machining process, Journal of Power Source, Vol. 185, pp. 1115-1121 (2008).
    37.R. Maeda, K. Chikamori and H. Yamamoto, Feed rate of wire electrochemical machining using pulsed current, Precision Engineering, Vol. 31, pp. 193-199 (1984).
    38.E. S. Lee, J. W. Park, and Y. H. Moon, A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing, International Journal of Advanced Manufacture Technology, Vol. 20, pp. 720-726 (2002).
    39.B. Bhattacharyya and J. Munda, Experimental investigation on the influent of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
    40.B. Bhattacharyya and J. Munda, Experimental investigation into electrochemical micromachining (EMM) process, Journal of Materials Processing Technology
    Vol. 140(1-3) pp. 287-291 (2003).
    41.B. Bhattacharyya , M. Malapati, J. Munda, Advancement in  electrochemical micro-machining, Journal of Materials Processing Technology, Vol. 44, pp. 
    1577-1589 (2004).
    42.B. Bhattacharyya , M. Malapati, J. Munda, Experimental study on electrochemical micromachining, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
    43.S. J. Ebeid, M. S. Hewidy, T. A. Eltaweel, A. H. Youssef, Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology, Journal of Materials Processing Technology, Vol.149, pp.432-438 (2004).
    44.T. Kurita, K. Chikamori, S. Kubota and M. Hattori, A study of   three-dimensional shape machining with an ECμM system, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
    45.B. Bhattacharyya , M. Malapati , J. Munda and A. Sarkar, Influence of tool vibration on machining performance in electrochemical micro-machining of copper, Journal of Materials Processing Technology, Vol.47, pp. 335-342 (2007).
    46.H. P. Tsui, J. C. Hung, J. C. YOU and B.H. Yan, Improvement of electrochemical microdrilling accuracy using helical tool. Material and Manufacturing Processes Vol. 23, pp. 499-505 (2008).
    47. T. Haisch, E. Mittemeijer, J. W. Schultze, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions microstructure of surface films formed by carbides, Electrochimica Acta, Vol. 47, pp. 235-241 (2001).
    48.M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 48, pp. 3203-3211 (2003).
    49.M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann, J. W. Schultze, Pulsed electrochemical machining of iron in NaNO3 fundamentals and new aspects, material and manufacturing processes, Vol. 20, pp. 1-8 (2005).
    50.M. M. Lorengel and C. Rosenkranz, Micro-electrochemical surface and product
    investigations during electrochemical machining (ECM) in NaNO3, Electrochimica Acta, Vol. 47, pp. 785-794 (2005).
    51.C. Rosenkranz, M. M. Lorengel and J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO3, Electrochimica Acta, Vol. 50, pp. 2009-2016 (2005).
    52.T. R. Idrisov, A. N. Zaitzev and V. P. Zhitnikov, Estimation of the process localization at the electrochemical machining by microsecond pulses of bipolar current, Journal of Materials Processing Technology, Vol. 149, pp. 479-485 (2004).
    53.J. Kozak, K. P. Rajurkar, and R. F. Ross, Computer simulation of pulse
    electrochemical machining (PECM), Journal of Materials Processing Technology, Vol. 28, pp. 149-157 (1991).
    54.J. Kozak, K. P. Rajurkar, and B. Wei, Modelling and analysis of  pulse electro-chemical machining (PECM), Journal of Engineering  for Industry, Vol. 116, pp. 316-323 (1994).
    55.J. Kozak, K. P. Rajurkar, and Y. Makkar, Study of pulse electrochemical micromachining, Journal of Manufacturing Processes, Vol. 6, pp. 7-14 (2004).
    56.S. V. Damme, G. Nelissen, B. V. D. Bossche and J. Deconinck, Numerical model for predicting the efficiency behavior during pulsed electrochemical machining of steel in NaNO3, Journal of Applied Electrochemistry, Vol. 36, pp. 1-10 (2006).
    57.R. Schuster, V. Kirchner and P. Allongue, Electrochemical micro machining, Science, Vol. 289, No. 5, pp. 98-101 (2000). 
    58.V. Kirchner, L. Cagnon, R. Schuster, and Gerhard Ertl, Electrochemical machining of stainless steel microelements with ultrashort voltage pulses, Applied Physics Letters, Vol. 79(11), pp. 1721-1723 (2001).
    59.A. L. Trimmer, J. L. Hudson, M. Kock and R. Schuster, Single-step electrochemical machining of complex nanostructures with ultrashort voltagepulses, Applied Physics Letters Vol. 82(19), 3327-3329 (2003).
    60. R. Schuster, Electrochemical Microstructuring with short voltage pulses, ChemPhysChem, Vol. 8, pp. 34-39 (2007).
    61. Y. Li, Y. Zheng, G. Yang and L. Q. Peng, Localized  electrochemical micromachining with gap control, Sensors and   Actuators A, Vol. 8, pp.
    144-148 (2003). 62. S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, Electro-chemical micro drilling using ultra short pulses, Precision Engineering, Vol. 28, pp. 129-134 (2004).
    63. M. Kock, V. Kirchner and R. Schuster, Electrochemical micromachining with ultra-short voltage pulses a versatile method with lithographical precision, Electrochimica Acta Vol. 48, pp. 3213-3219(2003).
    64.B. H. Kim, S. H. Ryu, D. K. Choi, and C. N. Chu, Micro electrochemical milling, Journal of Micromechanics and  Microengineering, Vol. 15(1), pp. 124-129 (2004). 
    65. P. Allongue, P. Jiang, V. Kirchner and A. L. Trimmer, and R. Schuster, Electrochemical micromachining of p-type silicon, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
    66. B. H. Kim, C. W. Na, Y. S. Lee, D. K. Choi and C. N. Chu, Micro electrochemical machining of 3D micro structure using dilute sulfuric acid, CIRPAnnals - Manufacturing Technology, Vol.54 pp. 191-194 (2005).
    67. B. H. Kim, B. J. Park and C. N. Chu, Fabrication of multiple electrodes by reverse EDM and their application in micro ECM, Journal of Micromechanics and Micro-engineering, Vol.16 pp. 843-850 (2006).
    68. M. S. Park and C. N. Chu, Micro-electrochemical machining using multiple tool electrodes, Journal of Micromechanics and  Micro-engineering, Vol. 17(8), pp. 1451-1457 (2007).
    69. B. J. Park , B. H. Kim and C. N. Chu, The effects of tool electrode size on characteristics of micro electrochemical machining, CIRP Annals – Manufacturing Technology, Vol. 55(1) , pp. 197-200 (2006).
    70. Z. Zhang, D. Zhu, N. S. Qu and M. Wang, Theoretical and experimental investigation on electrochemical micromachining, MICROSYSTEM technologies-micro-and nanosystems-information storage and processing systems, vol. 13, pp.607-612 (2007).
    71. H. S. Shin, B. H. Kim and C. N. Chu, Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses, Journal of Micromechanics and Micro-engineering, Vol. 18(8), pp. 075009-075014 (2008).
    72. D. Maria, S. Joshi and S. K. Maria, Modeling of electrochemical micromachining comparison to experiments, Journal of Micro-Nanolithography MEMS and MOEMS, Vol. 7(3), pp. 0330151-0330157 (2008).
    73.S. H. Ryu, Micro fabrication by electrochemical process in citric acid electrolyte, Journal of Materials Processing Technology, Vol. 209, pp. 2831-2837 (2009).
    74.C. H. Jo, B. H. Kim and C. N. Chu, Micro electrochemical machining for complex internal micro features, CIRP Annals - Manufacturing Technology, Vol. 58, pp. 181-184 (2009).
    75.J. J. Maurer, J. J. Mallett and J. L. Hudson, Electrochemical micromachining of Hastelloy B-2 with ultra-short voltage pulses, Electrochimica Acta Vol. 55, pp. 952-958 (2010).
    76.J.A. Kenney and G.S. Hwang, Electrochemical machining with ultra voltage  pulses: modeling of charge dynamics and feature profile evolution, Nanotechnology, Vol. 16, pp. S309-S313 (2005).
    77.J.A. Kenney and G.S. Hwang, Etch trends in electrochemical machining with ultrashort voltage pulses, Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4 (2006).
    78.J.A. Kenney and G.S. Hwang, Computational analysis of intra-tool interactions in electrochemical micromachining with multi-tip tool electrodes, Electrochemical and Solid-State Letters, Vol. 9(9), pp. D21-D23 (2006).
    79.Y.F. Luo, Differential equation for the ultra-fast transient migration in electrolytic dissolution, Electrochemistry Communications, Vol. 8, pp. 353-358 (2006).
    80.J. Kozak, D. Gulbinowicz, and Z. Gulbinowicz, The mathematical modeling and computer simulation of pulse electrochemical micromachining, Engineering Letter, Vol. 16, pp. 556-561 (2008).
    81.M. Sen, H.S. Shan, A review of electrochemical macro- to micro-hole drilling processes, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 137-152 (2005).
    82.M. Datta, D. Landolt, Fundamental aspects and applications of electrochemical microfabrication, Electrochemical Acta, Vol. 45, pp. 2535-2558 (2000).
    83.胡啟章編著,電化學原理與方法,五南圖書,p. 12-13(2002).
    84.田福助編著,電化學基本原理與應用,五洲出版社,p. 16,p. 104 (2004).
    85.吳浩青,李永舫編著,電化學動力學,科技圖書,p. 46,p. 121 (2001).
    86.S. V. Prasad, M. T. Dugger, T. R. Christenson, and D. R. Tallant, LIGA micro-systems: surface interactions, tribology, and coatings, Journal of Manufacturing Processes, Vol. 6, pp. 107-116 (2004).
    87.柯賢文編著,腐蝕及其防制,全華科技,p. 93-96 (1995).
    88.J. F. Thorpe and R. D. Zerkle, Analytic determination of the equilibrium electrode gap in electrochemical machining, International Journal of Machine Tools Design and Research, Vol. 9, pp. 131-144 (1969).
    指導教授
  • 洪勵吾 (Lih-wu Hourng)
  • 口試日期 2010-04-28 繳交日期 2010-05-04


     

    利豐行事業有限公司 www.li-fung.biz

    歡迎來到利豐行的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供精密表面處理的代理商,應對廠商高品質的表面處理需求,我們可以協助廠商滿足您對產業的不同要求,我們有能力達到非常卓越的表面處理品質,這是現有相關技術無法比擬的,表面處理技術皆集中於精密研磨,拋光, VTD PVD工具鍍膜, 光學鍍膜 optical coating, 金屬濺鍍 metallization, absolute chemie 精密CVD/PVD退鍍工藝 EMAG Precision Electrochemical Machining 精密電化學加工技術 (ECM / PECM) 取代放電加工), EMAG 硬車削/乾式車削 hard turning, Koepfer 滾齒(齒輪加工製造) 技術, Reinecker, KARSTENS 內外圓研磨外圓+內圓曲面磨削, Naxos-Union軸研磨, 凸輪軸, KOPP非圓研磨, SW中心加工機, EMAG 雷射焊接, 自動化設備. oelheld 超高性能研磨切削油/EDM 放電加工液等我們成功的滿足了各行各業的要求,包括:精密需求高的軸承盒、射出成型的模具、高壓空氣閥、航太零配件、超高硬度的切削刀具、醫療配件及汽車用精密五金等等。我們的產品涵蓋了從桌上型到工業級的生產設備;從微細零配件到大型五金配件;從小型生產到大型量產;從半自動到全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗.

    OTEC公司專門研發製造金屬和非金屬的精密表面處理技術及設備,如:切削刀具的鎢鋼和高速鋼之表面處理,並廣泛為世界級大廠所採用如:Guhring oHGIskar等等。利豐行引進最先進的精密研磨和拋光技術,並希望提供台灣廠商提昇產業競爭力及生產效益和使用壽命。OTEC精密表面處理技術被認定為世界的領導者之一。研磨拋光、邊緣導角、功能性、裝飾性,這些精密表面處理技術除了令人讚嘆外,OTEC的技術整合還考量到生產者的需求,讓生產者在質量上和效益上及成本上有一個完美的平衡。機械操作除了更人性化還能額外整合生產者目前的製造設備。OTEC的產品兼具美觀及實耐用,不佔空間卻能在最小的單位中創造出最大的質量,當你採購了OTEC的設備後,除了擁有出眾的表面處理技術讓您的競爭力提升外,當客戶拜訪您公司時也不免對您令眼相看而發出讚嘆,OTEC是您生意的好伙伴。

    另外有 EMAG ECM GmbH (ECM/PECM) 精微電化學加工技術在未來各種細微加工應用中佔有極大的優勢。該技術之優點係在於其加工能力與材料硬度無關,且能加工出微細及形狀複雜之表面結構,經由該製程加工後之產品表面具有粗糙度佳、無殘留應力及無裂縫產生等優良特性,常應用於航太、光電半導體、醫療器材、綠色能源、模具等產業上,本次研討會中特別邀請國內外知名學者及專家,介紹於精微電化學領域內之各種加工技術,可應用於燃料電池雙極板、生物晶片、微流體動壓軸承、微噴嘴、次世次流體分配閥元件、模具等產品加工上,機會難得,精彩可期。PECM為精密電化學切削的工程公司,其領先的技術,已在精密電化學切削領域達到量產化的水準。供顧客PECM精密電化學切削生產技術和客制化的製程設備。 Electrochemical machining / pulse electrochemical machining / precise electrochemical machining. Electro chemical machining (ECM) is a method of removing metal by an electrochemical process. It is used for working extremely hard materials or materials ...

     

    作為德國知名企業,埃馬克(EMAG)集團在齒輪、輪轂、轉向節等盤類零件加工方面一直不斷追求創新、高效,其倒置式車削中心不僅全球獨一無二,而且其在以車代磨工藝方面的研究和造詣也是首屈一指,其中EMAG VL3VL5 VSC 發表於 2010/11/30 09:38 AM
    | 精密電化學PECM加工技術用於微機電[] | 回應 [] | 引用[] | 人氣 [] | 推薦 [] |



    微電化學深孔加工之研究與分析←上一篇 │首頁│ 下一篇→Electrochemical machining carves out nanostructures
    本文引用網址: