首頁 » 表面處理概論
2015/03/30

不鏽鋼彈簧的表面拋光及去毛刺代工

不鏽鋼彈簧的表面拋光及去毛刺處理實例: 處理前後的比較
 

不鏽鋼彈簧的表面拋光及去毛刺處理實例: 處理前後的比較


繼續閱讀
2014/02/25

表面處理的目的及重要性

表面處理( Surface Treatment )

表面處理的對象非常廣泛,從傳統工業到現在的高科技工業,從以前的金屬表面到現在的塑膠,非金屬的表面.它使材料更耐腐蝕 ,更耐磨耗,更耐熱,它使材料之壽 延長,此外改善材料表面之特性,光澤美觀等提高產品之附加價值,所有這些改變材料表面之物理,機械及化學性質之加工技術統稱為表面處理 (surface treatment) 或稱為表面加工(surface finishing).

金屬表面處理(metal surface treatment)

金屬經初步加工成型後需修飾金屬表面,美化金屬表面 ,更進一步改變金屬表面的機械性質及物理化學性質等之各種操作過程,稱之為金屬表面處理.或稱之金屬 表面加工(metal surface finishing).
繼續閱讀
2013/10/23

齒輪傳動裝置的表面處理需求: 齒輪的去毛刺, 導角及齒輪CMP精密拋光研磨加工

 

齒輪組件通常具有複雜的幾何形狀,以及高的速度和效率的要求。這些部件必須承受高工作溫度和嚴重的負荷,這需要更耐用的部件。齒輪箱如果往往不遵守適當的休息程序,並修復損壞的變速箱或軸承, 這樣會大大增加運營成本,非常費時。

 

CMP同性超精拋光工藝解決了這些問題,通過減少摩擦,延長零部件的使用壽命,並提高燃油效率。 CMP 過程製造一個光滑,微紋理表面可以提高原油保持性能和冶金安全。我們已成功開發出一系列新的高容量,高速質量後整理工藝,專為滿足高生產的汽車行業的需求。這些的CMP過程是強大的,易於實現自動化,並嚴格控制以保持組件的幾何完整性。

 

不同行業可以利用CMP 機械化學拋光的製程:

  • 航天產業
  • 汽車
  • 專業賽車齒輪
  • 電動工具齒輪箱
  • 非公路 off-road 重負荷運輸工具
  • 發電用齒輪設備
  • 腳踏車內變速齒輪器
  • 各式 gear box 等等... 

繼續閱讀
2013/10/14

齒輪拋光, 倒角和去毛刺的重要性

經過機械化學拋光後, 可以明顯看出毛刺的去除, 與齒輪表面的拋光. 這個工藝顯著減少這些材料製成的零件的磨損. 
 

齒輪需要去除毛刺跟拋光的功能在於減少摩擦的好處:

  • 提高燃油經濟性
  • 減少接觸疲勞
  • 提高功率密度
  • 減少潤滑要求和成本
  • 較低的工作溫度
  • 延長平均維護間隔時間
  • 減少振動和噪音
  • 延長零件壽命,並降低零件故障
  • 降低維護成本
終端使用者的好處: 
  • 降低油耗
  • 降低維護成本
  • 減少維護時間
  • 消除打破

零件壽命更長+降低故障率+更少的燃料和潤滑油的要求=增加值和降低總擁有成本



齒輪, 倒角, 拋光和去毛刺的重要性 (4 photos)

繼續閱讀
2013/07/22

小模數齒輪CMP拋光和去毛刺工藝展示

小模數齒輪適用範圍廣,市場前景可觀,適用於航空、航天、航海、鐘錶、電子、自動控制等行業的精密儀器中,可實現傳遞運動、變換運動方向、指示讀數、傳遞力矩和調整機構的目的。其傳動形式有兩軸相互平行、兩軸相交和兩軸交錯3種。實際應用最多的是直齒圓柱齒輪,因為直齒圓柱齒輪用於傳遞平行軸間的運動,設計和製造都比較簡單,而且精度和效率較高。

小模數齒輪CMP拋光和去毛刺工藝展示-1
CMP鏡面拋光效果


由於小模數齒輪主要運用於精密儀器儀表,不但基本技術要求高,而且不同的運動形式、環境、結構需要不同的、更高的技術要求,一般包括以下幾點。(1)準確可靠的運動精度:每轉旋轉角誤差小。(2)平穩無衝擊的工作精度:瞬時傳動比變化小。(3)接觸精度高:嚙合齒接觸均勻,接觸面大,接觸應力小,少磨損,使用壽命長。(4)齒側間隙精度高。(5)噪聲小。 小模數齒輪切削的工藝方法有:銑齒、滾齒、插齒、剃齒、拉齒、衝齒和光整加工的磨齒、珩齒、研齒、拋齒、去毛刺。 小模數齒輪無切削的加工工藝方法有冷軋、熱軋、壓鑄和注塑等。 — at 利豐行事業有限公司 Li Fung Business Co., Ltd.

小模數齒輪CMP拋光和去毛刺工藝展示-2

CMP鏡面拋光效果
繼續閱讀
2013/07/19

針對不同不鏽鋼的研磨拋光以及不鏽鋼特殊鉻色的表面處理實例

利豐提供的不鏽鋼特殊鉻色處理實例
高級不鏽鋼鉻色拋光處理-3

不鏽鋼以其優良的耐腐蝕性能,良好的力學性能和加工性能及較好的焊接性能,成為被廣泛選用的工程材料。同時, 通過不同的拋光加工方法, 可以使各種不鏽鋼板材、管材、棒材、異型材的表麵具有不同等級的表麵光潔度,大大改善了不鏽鋼的外觀,使之達到美學效果,增加了對消費者的吸引力,給人們以美的享受。在日常生產和生活中,都得到廣泛使用。如不鏽鋼化工管道、不鏽鋼容器、不鏽鋼旗杆、不鏽鋼防盜門窗、不鏽鋼樓梯扶手、不鏽鋼水桶、不鏽鋼門碰珠、不鏽鋼廚房器皿等。
高級不鏽鋼鉻色拋光處理-2

 
繼續閱讀
2010/03/03

何謂粉末冶金 / Powder metallurgy?

 

何謂粉末冶金Powder metallurgy?

粉末冶金是一種以金屬粉末為原料,經壓制和燒結製成各種製品的加工方法。粉末冶金工藝包含三個主要步驟,首先,主要組成材料被分解成許許多多的細小顆粒組成的粉末;然後,將粉末裝入模具型腔,施以一定的壓力,形成具有所需零件形狀和尺寸的壓坯;最後,對壓坯進行燒結。

Powder metallurgy is a forming and fabrication technique consisting of three major processing stages. First, the primary material is physically powdered, divided into many small individual particles. Next, the powder is injected into a mold or passed through a die to produce a weakly cohesive structure (via cold welding) very near the dimensions of the object ultimately to be manufactured. Pressures of 10-50 tons per square inch are commonly used. Also, to attain the same compression ratio across more complex pieces, it is often necessary to use lower punches as well as an upper punch. Finally, the end part is formed by applying pressure, high temperature, long setting times (during which self-welding occurs), or any combination thereof.

Two main techniques used to form and consolidate the powder are sintering and metal injection molding. Recent developments have made it possible to userapid manufacturing techniques which use the metal powder for the products. Because with this technique the powder is melted and not sintered better mechanical strength can be accomplished.

History and capabilities

The history of powder metallurgy and the art of metals and ceramics sintering are intimately related. Sintering involves the production of a hard solid metal or ceramic piece from a starting powder. There is evidence that iron powders were fused into hard objects as early as 1200 B.C. In these early manufacturing operations, iron was extracted by hand from metal sponge following reduction and was then reintroduced as a powder for final melting or sintering.

A much wider range of products can be obtained from powder processes than from direct alloying of fused materials. In melting operations the "phase rule" applies to all pure and combined elements and strictly dictates the distribution of liquid and solid phases which can exist for specific compositions. In addition, whole body melting of starting materials is required for alloying, thus imposing unwelcome chemical, thermal, and containment constraints on manufacturing. Unfortunately, the handling of aluminium/iron powders poses major problems. Other substances that are especially reactive with atmospheric oxygen, such as tin, are sinterable in special atmospheres or with temporary coatings.

In powder metallurgy or ceramics it is possible to fabricate components which otherwise would decompose or disintegrate. All considerations of solid-liquid phase changes can be ignored, so powder processes are more flexible than casting, extrusion, or forging techniques. Controllable characteristics of products prepared using various powder technologies include mechanical, magnetic, and other unconventional properties of such materials as porous solids, aggregates, and intermetallic compounds. Competitive characteristics of manufacturing processing (e.g., tool wear, complexity, or vendor options) also may be closely regulated.

Powder Metallurgy products are today used in a wide range of industries, from automotive and aerospace applications to power tools and household appliances. Each year the international PM awards highlight the developing capabilities of the technology.[1]

Isostatic Powder Compacting

Isostatic Powder Compacting is a mass-conserving shaping process. Fine metal particles are placed into a flexible mold and then high gas or fluid pressure is applied to the mold. The resulting article is then sintered in a furnace. This increases the strength of the part by bonding the metal particles. This manufacturing process produces very little scrap metal and can be used to make many different shapes. The tolerances that this process can achieve are very precise, ranging from +/- 0.008 inches for axial dimensions and +/- 0.020 inches for radial dimensions. This is the most efficient type of powder compacting.(The following subcategories are also from this reference.)[2] This operation is generally applicable on small production quantities, as it is more costly to run due to its slow operating speed and the need for expendable tooling.[3]

Process Characteristics
  • Compacts powdered metal within a flexible mold by uniformly applied, high fluid/gas pressure
  • Parts are sintered to increase strength through metallurgical bonding
  • Produces very little scrap material
  • Can use alloy combinations and filler
  • Can produce complex workpiece geometries
quipment

There are many types of equipment used in Powder Compacting. There is the mold, which is flexible, a pressure mold that the mold is in, and the machine delivering the pressure. There are also controlling devices to control the amount of pressure and how long the pressure is held for. The machines need to apply anywhere from 15,000 psi to 40,000 psi for metals.


繼續閱讀
2010/02/22

镁合金的金相腐蚀方式

镁合金的腐蚀方式通常有两种情况:一是在一般环境中的腐蚀,称“一般腐蚀”或“环境腐蚀”,也称“化学腐蚀”,二是在原电池环境下产生的“电化学腐蚀”。 
繼續閱讀
2010/02/21

常用金相试样浸蚀剂的作用

1.硫酸

室 温下,硫酸溶液对金属氧化物的溶解能力较弱,提高溶液浓度,也不能显著提高硫酸的浸蚀能力,且其浓度达到40%以上时,对氧化皮几乎不溶解。因此,硫酸浸 蚀液的浓度,钢铁件一般控制在10%~20%(体积比),最适宜浓度为25%(重量)。提高温度,可以大大提高硫酸溶液的浸蚀能力,因其不易挥发,宜于加 热操作,热硫酸对钢铁基体浸蚀能力较强,对氧化皮有较大地剥落作用,但温度也不能过高,过高时容易腐蚀钢铁基体,并引起基体氢脆,故一般加热到 50~60℃,不宜超过75℃,而且还要加入适当的缓蚀剂。
浸蚀过程中累积的铁盐能显著降低硫酸溶液的浸蚀能力,减缓浸蚀速度并使浸蚀后的零件表面残渣增加,质量降低,因此,硫酸溶液中的铁含量一般不应大于60g/L,当铁含量超过80g/L、硫酸亚铁超过215g/L时,应更换浸蚀液。
硫 酸溶液广泛用于钢铁、铜和黄铜零件的浸蚀。浓硫酸与硝酸混合使用,可以提高光泽浸蚀的质量,并能减缓硝酸对铜、铁基体的腐蚀速度。硫酸与铬酸及重铬酸盐一 起使用,可作为铝制品的去氧剂和去挂灰剂。硫酸与氢氟酸、硝酸或二者之一混合,可用于不锈钢去除氧化皮。硫酸阳极浸蚀是钢铁去除氧化皮和挂灰的有效方法。

2.盐酸

常温下,盐酸对金属氧化物具有较强的化学溶解作用,能有效地浸蚀多种金属。但在室温下对钢铁基体的溶解却比较缓 慢,因此,使用盐酸浸蚀钢铁零件不易发生过腐蚀和氢脆现象,浸蚀后的零件表面残渣也较少,质量较高。盐酸的去锈能力几乎与浓度成正比,但如果浓度高达 20%以上时,基体的溶解速度比氧化物的溶解速度要大得多,因此,生产上很少使用浓盐酸,其适宜浓度一般在20%~80%(体积比)的范围内。在浓度、温 度相同时,盐酸的浸蚀速度比硫酸快1.5~2倍。
盐酸挥发性较大(尤其是加热时),容易腐蚀设备,污染环境,故多数为室温下进行操作,个别部门也采用浓盐酸和适当加温。

3.硝酸

硝酸是一种氧化型强酸,为多种光亮浸蚀液的重要组成成分。低碳钢在30%的硝酸中,溶解得很激烈,浸蚀后的表面洁净、均匀;中、高碳钢和低合金钢零件,在上述浓度硝酸中浸蚀后,表面残渣较多,需在碱液中进行阳极处理,方能获得均匀、洁净的表面。
硝酸与氢氟酸的混合液,广泛用来除去铅、不锈钢、镍基和铁基合金、钛、锆及某些钴基合金上的热处理氧化皮。然而纯硝酸却易使不锈钢、耐热钢等钝化。
硝酸与硫酸混合(有时加入少量盐酸),可用于铜及铜合金零件的光泽浸蚀。
硝酸挥发性强,在同金属作用时,放出大量的有害气体(氮氧化物),并释放出大量的热,硝酸对人体有很强的腐蚀性,操作时必须穿截好防护用具,硝酸槽要有冷却降温装置,酸槽和其后的水洗槽应设有抽风装置。


繼續閱讀
2009/12/31

表面工程的特點

第二章 文獻回顧
2-1 表面工程的特點
表面工程是通過表面被覆、表面改質或多種表面工程技術複合處理,
改變固體金屬與非金屬表面的形態、化學成分、組織結構和應力狀態等,
以獲得所需表面性能的系統工程。其含義很廣,它概括了表面處理、表面
加工、表面鍍層、表面改質以及薄膜技術等內容。其最大的優勢是能夠以
多種方法製備出優於基材性能的表面功能薄膜,賦予零件耐高溫、防腐蝕、
耐磨損、抗疲勞、防輻射等性能。這層表面材料與製作零件的整體材料相
比;厚度薄,體積小,但卻承擔著工件表面的主要功能。
二十一世紀機械製造業的進一步發展很可能主要受制於表面工程技術
的發展。為了獲得高生產率,高效率和低能源消耗,要求機械在更嚴苛的
條件下工作,就需要機械構件表面具有多種綜合性能。為此必須進一步挖
掘複合表面工程的應用潛力,以滿足高性能表面的新要求。在表面工程的
領域,關於不同底材上鍍層和處理技術的優化和標準化、多層膜的摩擦接
觸力學求解、殘留應力的控制與優化、多層膜的設計與技術指南、鍍層化
學效應和機制、高溫自潤鍍層、鈦和鋁等輕合金的預強化與複合表面工程
技術、陶瓷材料表面工程技術、奈米尺度多層膜及複合膜技術等方面的研
究必將進一步深入和完善,以滿足不同領域對構件表面性能越來越苛刻的
要求。
當前的表面工程發展非常迅速。多種表面工程技術的複合,能夠形成
新的鍍層體系,並建立表面工程新領域。單一表面處理技術往往有一定的
侷限性,而無法滿足嚴苛工作要求,於是出現了結合兩種或兩種以上之表
面處理技術,被稱做複合表面技術或複合處理,透過這一種技術整合,希
複合處理在剪切刀具上的應用研究

繼續閱讀
2009/12/21

The War on Corrosion

The Other War


New weapons in the Pentagon's battle against corrosion—and pollution

By Randall J. Brady 

Corrosion of equipment is a significant and ongoing problem for today's military commanders in all branches of service. It has been estimated that corrosion costs the U.S. Department of Defense more than $20 billion annually and is the number one driver in military life-cycle costs.

To minimize these costs, manufacturers and maintainers of military aircraft and other equipment have historically used coatings that contain hexavalent chromium pigments for corrosion resistance. These pigments provide good corrosion protection; however, they are hazardous both for the environment and for maintenance personnel. Use of primers and pretreatments containing hexavalent chrome also increases disposal costs and maintenance time because of the required use of special personal protective equipment and special handling procedures.

Because of the environmental and worker safety restrictions levied on users of coating materials containing hexavalent chromium, Deft Inc. (Irvine, CA) has created a line of ambient-cured solvent- and water-reducible epoxy primers and pretreatments that contain no hex chrome. These materials maintain corrosion protection comparable with that of their predecessors while meeting physical property requirements and decreasing disposal and maintenance costs.

Some History
In the 1990s, a Joint Group on Pollution Prevention (JG-PP)—a partnership between the military services, NASA, the Defense Logistics Agency (DLA) and the Defense Contract Management Agency (DCMA)—was tasked with reducing or eliminating use of hazardous materials or processes within the military acquisitions and sustainment communities. In particular, the group made a concerted effort to reduce or eliminate the use of hexavalent chromium in primers and metal pretreatments.

Like many paint formulators and other organizations, Deft Inc. (Irvine, CA) participated in this program and started its own efforts to develop an understanding of the basic principles of corrosion formation and the mechanisms that prevent it. Initial attempts at hex-chrome-free materials substituted conventional non-chrome technologies such as zinc or calcium-based pigments used in traditional two-component epoxy and urethane systems. These showed some initial promise, but were far from the goal of equivalent or comparable performance with hexavalent chromium pigments when tested according to applicable military and other specifications.


繼續閱讀
2009/12/10

鈦基硬質合金綜述

2009/12/10 13:05

內 容摘要:一、鈦基硬質合金的性能 鈦基硬質合金是以TiC或Ti(C, N )為主要成份(占60%~80%以上),Ni-Mo或Ni-Co-Mo作粘結相的硬質合金。鈦基硬質合金的英文名為“Cermet”。這類合金過去有人稱 之為“金屬陶瓷”。但國際標準化組織ISO153-1991將其劃歸在硬質合金大類內(材料代號HT),而不是陶瓷材料大類內。

一、鈦基硬質合金的性能
鈦 基硬質合金是以TiC或Ti(C, N )為主要成份(占60%~80%以上),Ni-Mo或Ni-Co-Mo作粘結相的硬質合金。鈦基硬質合金的英文名為“Cermet”。它是由陶瓷 (ceramics)的詞頭cer與金屬(metal)的詞頭met結合起來構成的。這類合金過去有人稱之為“金屬陶瓷”。但國際標準化組織 ISO153-1991將其劃歸在硬質合金大類內(材料代號HT),而不是陶瓷材料大類內。為了區別於國內習稱的“金屬陶瓷”——在Al2O3-TiC中 加入少量粘結金屬(Ni和Mo等)的陶瓷,所以本文使用國際標準化組織用語“鈦基硬質合金”。


繼續閱讀
2009/12/01

陶瓷 非金屬材料加工

2009/12/01 09:50

目錄

12.1 陶瓷材料

12.2 塑膠加工

12.3 複合材料加工

簡介

科技的進步發展出之新產品中有些特殊的功能或性質是金屬材料所不易或根本無法達成的。

例如高溫強度、高硬度、高耐磨耗、高耐腐蝕性、輕量化、高重量對強度比、低導電性、低電阻抗、兼具高強度及韌性等。

有許多非金屬材料和針對特定需求而研發出來的新材料,並取代部份金屬材料的地位。

常見的工程用非金屬材料有陶瓷與玻璃、塑膠和複合材料。

簡介(續)

陶瓷是由金屬和非金屬元素以結晶構造所組成,原子間鍵結方式包含共價鍵和離子鍵。

玻璃的組成元素和陶瓷類似,但不具結晶組織。

塑膠是由許多單體聚集所形成之聚合體,結合的力量包含共價鍵和凡得瓦力(次鍵結)。

複合材料則是結合兩種或兩種以上不能相互固溶的物質所形成之非均質體材料。

由此可知,對非金屬材料加工的機制將與應用於金屬材料者,會有鉅大的差異。


繼續閱讀
2009/10/26

New Approach to Internal Deburring and Cleaning

Opposing blast nozzles put turbulence to work.
Edited by Jim Destefani
Editor

A patented process for rapidly cleaning and deburring complex internal passages in castings and other components is being marketed by Hammond Roto-Finish (Kalamazoo, MI).

Opposing nozzles
Opposing nozzles can create a 360° blast pattern, and flow through intersecting passageways to provide rapid cleaning and deburring of castings and other parts with complex internal geometry. .

Developed by Steve Carpenter, president of Hammond distributor Grand Northern Products (Grand Rapids, MI), the Recipro-Blast process uses opposing blast streams to create turbulence inside the component being processed. The turbulence created by the opposing streams aggressively removes internal burrs, burned-on sand and leftover mold or core materials from difficult-to-reach passages and highly cored and deep components. Nozzle and part movement are servo-controlled.

Carpenter explains that the system grew out of his foundry experience. “When I worked in foundries, first as a chief engineer and then as a plant manager, a common problem was cleaning interior part passages, especially small IDs with long or irregular sections,” he says. “In an effort to create turbulence that could be controlled, we tried introducing blast streams from opposing ends with some amazing results.”

Carpenter continued to develop the process, then patented it and sold the marketing rights to Hammond. He says it can replace labor-intensive hand cleaning, molten salt cleaning, rotary brushes, extensive external wheel blasting and other processes such as thermal deburring.

In simple terms, the process uses two or more opposing blast nozzles to impart reflective, random energy to the blast media at a chosen area inside the part. According to Carpenter, Recipro-Blast is much more effective and much faster than conventional blasting for internal deburring and cleaning.


繼續閱讀
2009/10/15

ENd of the Recession?

2009/10/15 07:45

It's no secret that the difficult business environment of the past year or so has impacted everyone in our industry. In what's been called a perfect economic storm, some shops and suppliers have faced tough decisions—including going out of business.

Yet requirements for engineering, anti-corrosion, decorative and other coatings to support applications in all types of industries remain. In the relatively small domain of the finishing industry, shop owners and operators, and many suppliers, have primarily focused on trimming non-essential costs and improving operating efficiencies while scrambling to keep the doors open.

As the global economy cycles back toward some form of "normalization," plating facilities and suppliers need to position themselves to initiate and accelerate their own economic recovery. There are many methods for stimulating recovery, but focusing on activities that grow the "top line" sales for your company can provide an immediate positive impact. Also important is balancing the "bottom line" by optimizing existing technologies.

For our company, one element of recovery involves an emphasis on research and development of new technologies that will enable finishers to grow their top line by developing new markets. Our focus has been largely on niche applications and the development of technologies to stimulate efforts to break into those niches.


繼續閱讀
1 2 3 4 5 下一頁 最末頁